

GRADE: XII Date: 05/11/2024	MT 3 (2024-25) APPLIED MATHEMATICS	Marks: 20 Time: 1 hours
-----------------------------------	------------------------------------	-------------------------------

General Instructions:

Read the following instructions very carefully and strictly follow them:

- (i) This Question paper contains 11 questions. All questions are compulsory.
- (ii) This Question paper is divided into three Sections A, B, and C
- (iii) Use of calculators is not allowed.

Q.No	Questions	Mark
	SECTION A	
1	Find $\frac{dy}{dx}$, if $x^2 - y^2 - 5 = 0$	1
		
	a) $\frac{x}{y}$ c) 2y	
	b) 2x d) 0	
2	Find $\frac{dy}{dx}x^2$	1
	a) x c) 0	
	b) 2x d) 2	
3	Find the second order derivative of $ax^3 + bx^2 + cx + d$	1
	a) $3ax+2bx+c$ c) $3ax^2 + 2bx + c$	
	b) 6ax+2b d) 3a+b	
4	Find the derivative of $x^2 ext{.} e^x$	1
	c) $x^2 \cdot e^x + e^x \cdot 2x$ c) $x \cdot e^x + x^2 \cdot 2x$	
	d) $x^2 ext{.} xe^x + e^x ext{.} 2x$ d) none of the above	
5	A function is said to be strictly increasing on an open interval (a,b) if	1
	a) $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$	
	b) $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$	
	$c) x_1 < x_2 \Rightarrow f(x_1) \le f(x_2)$	
	d) $x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2)$	

	SECTION B	
6	Find the interval in which the function is strictly increasing or decreasing	2
	$f(x) = 5 + 36x + 3x^2 - 2x^3$	
		2
7	Divide 30 into two parts such that their product is maximum	
8	If the cost function is $C = 40 - 6x + x^2$, find the minimum value of cost C?	2
	SECTION C	
9	Find the local maximum and local minimum values, if any of the function $y = \frac{x^4}{x-1}$, $x \neq 0$	3
10	The total revenue received from the sale of x units of a	3
	product is given by $R(x) = 200 + \frac{x^2}{5}$ Find	
	5	
	i) The average revenue	
	ii) The marginal revenue iii) The marginal revenue when x=25	
	iii) The marginal revenue when x=25	
11	Case study	
	An architecture design an auditorium for a school for its cultural activities. The floor of the auditorium is rectangular in shape and has a fixed perimeter P.	
	Based on the above information solve the following questions:	

i)	If x and y represents the length and breadth of the rectangular region, then relation between the variable is: a) $x + y = P$ b) $x^2 + y^2 = P^2$ c) $2(x + y) = P$ d) $x + 2y = P$	1
ii)	The area A of the rectangular region, as a function of x, can be expressed as: a) $A = Px + \frac{x}{2}$ b) $A = \frac{Px + x^2}{2}$ c) $A = \frac{Px - 2x^2}{2}$ d) $A = \frac{x^2}{2} + Px^2$	1
iii	2	1

Prepared by AMY SHAJI

Checked by TESSY ROY VARGHESE